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Analysis of a new skip list variant
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For a skip list variant, introduced by Cho and Sahni, we a®lyhat is the analogue of horizontal plus vertical search
cost in the original skip list model. While the average in Rag@riginal version behaves lik@ log, n, with @ = % a
parameter, itis here given l) + 1) logg n.
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1 Introduction

Skip lists were introduced by Pugh (10) and analysed in (3) 4nd also some other papers.

We assume that the reader has a certain familiarity skith lists,if (s)he wants to understand the origin
of the problem. To understand the analysis that we perfoasuch prerequisites are necessary.

The variation that was suggested in (1) is best understazdrig at the following example, taken from
(D):

The data §,6,7,9,12,17,19,21, 25, 26) have a certain level associated to them, which follows e g
ometric lawP{levelis= k} = pg*~'. And they are linked as indicated, which one can easily wstelad
from the diagram.

level H T
= 21 00
n [o————LT]

3 —00 9 0
[ | N | |

5 —00 6 17 26 oC
[ | N N | L | |

\ \

1 —00 3 7 12 19 25 o0
| | | | | | | | | | | | | |

We want to study the length of a path to reach a certain elerfeninstance, to readb, we follow the
path9-17-19-25, and we record 4 steps. A step from the header to the data,|basasteps downwards
between header elements are not counted.

The values of the data are completely immaterial; only thielteare of relevance. So, in our example the
sequence i3213121412. We start from the highest level that still allows us to rettud desired element,
(herel), and stay there as long as possible. Otherwise, we go dowieual.

The process is easier understood, if we think about the sequeversed (here2141213121).

The path of interest starts then at the element to be fourre the second element of sequence), which
has level 1, and we scan the sequence, counting elements sartte level, until we find an element with
the next level (one level higher), etc. We thus “visit” therekents marked in boldfacé141213121, and
we have 4 marked elements, which checks with the length oéearrch path.

T This material is based upon work supported by the NationabReh Foundation under grant number 2053748
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Since elements to the left of where we start are irrelevaatagsume that we start with the first element.
We will study the parameték (a,as . . . a,, ), which we might call the number @feak consecutive maxima,
as we count repetitions of the (current) maximum, and onbpathe maximum to change to the next value
(=1+ the previous value).

We did not care about implementations of this data structiie quite likely that if one does this, then
some parameters that are similar to @0y but slightly different, play a rble. We leave such indcdiy
interesting variations to the interested reader.

For our probabilistic analysis, we assume that the lavetse independently generated by the geometric
law with parameteq (with p = 1 — q).

We have two parameters, the levethat has been already reached, and the coutitehat counts how
often the current maximurhhas been either repeated or replaced by1.

There is a small technical sublety: Sometimes it is usefdssume that we start at leveland with
K = 1, beforewe start to read the word. We will call this versidi’’ (n). For the skip list analysis, we
assume that the first symbol read defines the starting vdligeyérsion will be calledK(n). Of course,
they are intimately linked, and in a slight abuse of notatiea can say that

K(n) = qur71K<T>(n - 1).
r>1
Being precise, this informal equality reads
P{X(n) =k} =Y pg" '"P{K")(n—1) = k}.
r>1

For the sake of clarity, we give the list of values for the wd8d12435351:

H KM ‘ 7 H K2 ‘ 72 H K3) ‘ 7(3) H K@ ‘ (4 H K5) ‘ 7(5) H
[ 713l s s s[s]als]s][s]

We use (standard) notation frapranalysis:(z),, = [[/—, (1 — #¢*) and(z)ee = [I;5,(1 — z¢). Note
that(z), = (7)o /(7¢"), and the latter form makes sense alsorf@ complex number.
Furthermore, we us@ = 1/¢, andL = In Q).

2 Generating functions
We consider the random variabl&s™ (n) andI{" (n). Let
w(n;k,i) = P{K™(n) = k, I (n) = i}.

(We don’t write the parameterinto this notation, in order not to overload it.)
As a warm-up, we start at level= 1. We have the backwards equation

1

m(nik,i) =7(n— 1k —1,i— 1)pg" ' +n(n — Lk —1,i)pg" " +7(n— 1;k,i)(1 — pg" " — pq')

andz(0;1,1) = 1.
We want to translate this into a trivariate generating fiarct

F(z,u,v) = Z m(n; k,i)z"ubv’.
n,k,i>0

Multiplying the backwards equation ky?u*+’ we eventually get after a few routine simplifications (note
that F'(0, u, v) = uv):

F(z,u,v) = T {uv—l—pz(uv—l— 2(11 —q— 1))F(z,u,qv)}

Iterating, this gives
j—1

pz)’ ; ;o u—qg—1

———uwgq H (m;q + 7)
— z)i+1

7j>0 Z) =0 a

!
iy
N

I
<
=

I

—
=
=
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Settingu = 1 means ignoring thé& -parameter and only counting the level. The correspondamgat-
ing functions can be found in our recent paper (8).
However, we rather ignore thieparameter here, which means that weset 1, to get

G(z,u) = F(z,u,1) :Z( (p jﬁluq]H (uq + _q_l)

§i>0

The modifications for the starting leveare only minor:F(0, u,v) = uv”, otherwise the same functional
equation. Iteration produces the explicit form

(p2)’ =

, _ pz)! o u—q-—1
F(z,u,v) = F! >(z,u,v) = Z mu(wﬂ) H (m)ql + T)

>0 1=0
The generating function that is relevant to the skip list, is
F(z,u,v) =z qur71F<r> (z,u,v)
r>1
j iy 2 g1
-4 1(pz) i1 d vj H (uvq + L) (2.1)
¢ = (1=2)71=¢v 4 q
and since thd-parameter is not relevant,
S(z,u) =F(z,u,1) = — - - (uq +7).
¢ = (1=2)71-¢ ;4 q
Note that
U — n 1 i u—q—1
+1 _ +1 ’ l 4
[2"1S(z,u) = EJZ:O(M)’ <]>WIHO (uq +T)-

There is another way to get this generating function, whicmorecombinatorial. There is a unique
decomposition of words:

* + * + * +
(T(N\ {r,(r +1)}) ) ((r + )N\ {(r + 1), (r + 2)}) ) (S(N\ {s,5+1}) )
This expresses the fact that the level starts ahd ends a, which must be summed over all possible
choices. If one translates this symbolic form accordinghg gets
i—1

> M
1—2z+4+2pgi—t(1+q—u)

1<r<si=r

We will give a direct proof in the sequel that the two forms3ik, u) coincide, which is surprisingly
difficult. In order to avoid confusion, we temporarily caflet second forn§(z, u); we will drop the bar
once equality has been established.

We substitute = w/(w — 1). This substitution is common in the analysis of skip-lististures Euler
transform). Here is the formula linking coefficients:

U6 = 5 § G o = 5 S P
AP . n—1 n—kr, n—~k
= (1)} (=) (1~ )" —Z(ky4>m 1f(=().

Thus

0

i—1

G(z,u) = Z (71)5-{-177’1—[ ’U}gpq

— i—1 _ :
52 - L—wpg ' (1+q - u)
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Then, by the principle just explained,

s i—1

[zn+1]§(27u) — (71)n+1[wn+1](1 —w)" Z (71)s+177« H 11{7ipq

S l—wpg (14 q —u)

1<r<s
rh ot wupg’
— n+1z< > wn+1 k] Z (71)h H
_ i—1 _
1<rh i=r 1 wpqz (1 T4 u)
n h itr—2
n) k=17, k+1 )i wupq'
=2 )V e 2 DM ,
_ ifr—2 _
— <k S pale 1—wpgtm™=2(1+q — u)
n k41 h i—2
77) k-1 4 kt1 h wupq
= (D' ——= "D D] —
— gk+1 — -2 —
k=0 <k 1-q h>1 il wpg (14 g —u)
- <”> k—1 (pQ)kH k+1 Z h ﬁ wug'?
= (-1)" g™ ) (=1) ; :
_ gk+1 _ -2 _
Pt k 1—¢ = Pl 1—w¢=2(1+q—u)
We still have to prove that
u i u—qg—1 h wug®?
l —a— 1\ _ k=17, k+1 )
1L (ud' + )= 0t et ] 2
7 q = 1—wg2(14+q—u)
k1) ﬁ wug' 2
= [w
2 _
h>1i 11+qu (1+q—wu)’
or, in equivalent form:
h wug’
UH (uql +u—qg— 1) = [11)k+1]ZH . .
=1 h>0i=0 1+wg(1+q-u)
Now set, withv =1+ ¢ — u,
YT
S0 iso 1+ wqgiv’
then
wu wu
H = + H ,
(w) 1+wv  14+wv (wa),
or

(1 + wv)H(w) = wu + wuH (wq).

With ay, = [w* 1] H (w), we find"
ar +vag_1 = uk = 0] + ugay_1,

or
ar = ulk = 0] + (ug® — v)ag_1,

from which we find by iteration
k

a =u H(uql — ),

=1

as desired.

() We use Iverson’s notatio:P] = 1 if P is true, zero otherwise.
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3 Moments

We start from

[2"T11G(2,u) = %zn:(pq)”] <n> #ﬁ (uql + “_Tq_l)

j=0 J 1=0
Differentiate this, then set = 1 to get the average:

1@+ 0300 (1) o [I6 -1
j=1 . =1

n

=14+p@Q+1)> (pg) <7;> #(—1)7'*1 (@)1

=140@+ 1 3200 () gy @)
i 1 n!(=1)" (pg)* (Do,
=1-p@+ 1)2m' / 2z—=1)...(z—=n) (1 —¢#t1)(1 — ¢*) (qz+])ood .

This integral representation comes frétice’'s methodWe cite the survey paper (3) for that. The contour
includes the poles, 2, . .., n and no others. Changing the contour, one is lead to compeiufside poles
as a compensation. Here, we have to consider the poles-d and atz = y;, = 2wik/L. The machinery
is explained in more detail in the earlier skip list papers)7

Thus we compute

_ (=" (pq)* (9)
1+ +1)[z! 1
R R [T E) o Ira
_ Q+1 Q+1 B (1497
We use the (standard) abbreviation '
ql
o=y
i>1
So the averagBX(n + 1) is asymptotic to
1 1 1 2
(Q+1)loggn + (Q'Z il + QZ In(p) = (@ + 1o — % +d(logyn) + 1.

To compute the second (factorial) moment, we have to difiéaiee

U — n 1 i u—q—1

- (pq)j+1 ( > — | | (uql + 7)
— git1

q J)1=e q

j=0
twice with respect ta;, and then set = 1. This leads to

n

2(5(n +1) - 1)+ 2@+ DY (1) (417 P s @y TG,

with . .
J— I J—
. ¢+ .
T =Y ——+=-Q(-1)—-(@Q+1)
=1 q =1
Now it is easy to replace the discrete paramgtey a complex variable:

T(z):Q(zl)(Q-l—l)(aZ ¢ (i )

_l+zi _nz
1211 q 1-¢g

Q=

q
1—¢t

[a—y
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Aroundz ~ 0,

L(Q—i—l)):

T(z)~—+2%—z(L5(Q+1)+Q— B

with

Thus the residue computationat 0 leads to

-1y n!(-1)" (pq)? (@)oo
2(z=1)...(z=n) 1= ¢t (1 - ¢*) (*)

Notice the following expansion:

2p(Q +1)[z

2

0o L
(@) ~1—2La+z27(a2+ﬂ).

(")

Now Maple computes the variance (fluctuations must be adueding from the poles at;). To summa-
rize:

Theorem 1 Expectation and variance of tt%(n)-parameter are asymptotic to

EX(n) ~ (Q +1)loggn + (sz + Q; Ln) — (@ + 1o —

(1+¢)?
2pq

+ d(logg n) + 1,

In(p)

T Q@R+ Da—(Q+1)8

VK(n) ~ Q(Q+1)10gQﬂ+Q(Q+1) +(@+ )—+Q(Q+1)

612
- 2Q@+1) (@+1)? (5622716@* 1)
L 12(Q — 1)2

+ 6Var(10gQ TI/) .

The constanta and 3 are given by

o =
i>1

q' q
1— qz B Z (1 _ qz)z

i>1

d(z) anddvar(x) are small periodic functions. Their Fourier coefficientaittbbe given in principle.

Note that we actually did the computations t&(n + 1) instead ofX(n), but that does not make a
difference for the main terms displayed here.

4 The cumulative X-parameter

So far, in terms of the proposed new skip list, we computeddlierage) cost to get to the last element.
(Recall that for the analysis we think about the reversedisece, thus we start with the first element.)
But one also wants to know the cost to get to any of the otheneés. So, we compute here theerage
cumulative cost

EX(1) 4+ --- + EX(n).

This is easy on the level of generating functions; it just nee@multiplication byt /(1 — 2):

[e%e) 1 j—1
_u (pqz)’t 1 L u—qg—1
(z,u _Ez (1—2)it21— git! H(“q Rl )

J= =0

1-— z

Now we differentiate this with respect tg and set, = 1:

© (pz) J+1

(1- ) T@+l Z (1—2)it21 ,qq]+1 (-1 (@)1

le
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This time it is more convenient to read off the coefficient Bf

1 qj
(1 —2)i+t21— gitl

+Q+D)Y P (=1 (@)1
7j=1

n—1 1
. n q’ .
P () 0 @
j=1
qj

srhe@st Zp () lqu)(lqu’l)(_l)j(q)jq'

Thus, using Rice’s integral once again, which this time @sesntour that enclosed the poles..,n we
must look at

_ z— —1 n'(_l)n z qz
Q(Q+1)[( 1) ]2(271)(2777)13 (liqz)(liqul)(Q)zfl
Q@+ 1) ni-1)” L
EES e e L s o L
—n4n 51 (n — 1)!(*1)7171 241 ¢t
= Q@+ VS e T T e Y Goea— )@=

This is eventually evaluated with the help of Maple.

Theorem 2 The expected value of the cumulatiién)-parameter is given by

In(p)

n (Q+1)%+(Q+1)T—(Q+1)a—Qle Q°+3

L 2Q-1

] + deum(logg n) |-
Of course, one could repladé, | by Inn + ~.

5 Additional analysis

As we explained in the introduction, in our parameter, stbpsnwards in the header structure as well as
the single step from to the header to the actual data are clodied. The latter one is just one step, so it
does not require analysis. The first one, however, is therdifice between theaximunof the word and
thelevel finally reached.

Now it is a folklore result that the maximum (sometimes ahleight) is~ log, n (see (11; 6)). The
level that is reached at the end is a parameter typically@neoed inapproximate countingsee (2; 8; 5).

We find it from the generating function (2.1)

5( ) UZ (pz)? v Jl—f( N qul)
2,U,0) = — . . uw _
o & (1=2)) 1-q¢lv g

§>1 1=0 4
by settingu = 1:
1 (pz)? v 1 pz  qu
F(z,1 = - - J 1 — - .
(z,1,) q;(l—z)fl—qfv H vq + gl—z1—-qu

Differentiating w.r.t. v, followed byv = 1 gives the generating function of the average of the finallleve
reached:
1 =z

(- 1)j(Q)] 2+ — P12

0

— 1,v
81)g(2 ‘ 1 —qJ
]>2

Now, reading off the coefficient of**!, we get
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The residue computation as before produces the asympiqiamsion of the average level, reached after
n + 1 (or alson) random steps:

In 1
logQ n+ # —a+ % + 5 + 6|eve|(10gQ 'n/).

Since the average of the maximum is

1
IOgQ n + % + 5 + (Sma)qmun{logQ n),

the difference of the two parameters is (apart from fluctesj@symptotic tex — @.

6 The X-parameter for permutations

In this section, we consider, instead of words, permutat{@amich can also be interpreted as special words).
The definition of theX(n)-parameter is the same. The analysis is easy, and theredcdrahy no applica-
tions, so we keep this section rather short.

Consider the probability (n, 1) that theX(n)-parameter i$> [. Then the permutation must look like

(rwi(r + Dwa(r+2)...(r+1— 1w

Note thatw, ... w; is any permutation of. — [ letters; there arén — [)! of them. The number of ways to
splitthem intal groups is(’;j) . The number of choices for the firstlette= 1, ... ,n+1—-1lis(n+1-1).
Thus

1 n—1 1 11
W(”/J)Zm("l)!<n_l>("+1l): (-1 n(l-2)

Therefore we find the expectation:

EX(n) ~ Zn:ﬂ(n,l) ~ (1 - %)e.

=1
A similar computation gives the variance (again apart fraqpomentially small terms):

VX(n) Ne(Bfe)-I-Mfi.

n n?
7 Conclusion

TheX-parameter analysed in this paper is the analogue of theio@chborizontal and vertical cost in the
original skip list. This parameter n averageasymptotic to~ @ logg n, as shown for instance in (9; 7).
Our present analysis gives a leading tef@h+ 1) log,, n, so the logarithmic behaviour is preserved (as
predicted in (1)), but with a larger constant.

In the section on the cumulatiE-parameter we discussed thgerageof the total search cost, the
parametepath length which, for a given word; . . . a,, is defined to be

Plar...an) :=K(ar...a,) +K(az ... an) + - + K(an).

For the average this does not make a difference, but higherents and distributioare different. This
parameter is, apparently, much harder to analyse. We happaot on it in a subsequent publication.
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