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Analysis of a new skip list variant
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For a skip list variant, introduced by Cho and Sahni, we analyse what is the analogue of horizontal plus vertical search
cost in the original skip list model. While the average in Pugh’s original version behaves likeQ logQ n, withQ = 1q a
parameter, it is here given by(Q+ 1) logQ n.
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1 Introduction
Skip lists were introduced by Pugh (10) and analysed in (7; 4;9) and also some other papers.

We assume that the reader has a certain familiarity withskip lists,if (s)he wants to understand the origin
of the problem. To understand the analysis that we perform, no such prerequisites are necessary.

The variation that was suggested in (1) is best understood looking at the following example, taken from
(1):

The data (3; 6; 7; 9; 12; 17; 19; 21; 25; 26) have a certain level associated to them, which follows the ge-
ometric lawPflevel is= kg = pqk�1. And they are linked as indicated, which one can easily understand
from the diagram.

12
34

�1�1
�1�1

3 7 12 19 25 16 17 26 19 121 1H Tlevel

We want to study the length of a path to reach a certain element. For instance, to reach25, we follow the
path9–17–19–25, and we record 4 steps. A step from the header to the data, as well as steps downwards
between header elements are not counted.

The values of the data are completely immaterial; only the levels are of relevance. So, in our example the
sequence is1213121412. We start from the highest level that still allows us to reachthe desired element,
(here3), and stay there as long as possible. Otherwise, we go down one level.

The process is easier understood, if we think about the sequencereversed, (here2141213121).
The path of interest starts then at the element to be found (here the second element of sequence), which

has level 1, and we scan the sequence, counting elements on the same level, until we find an element with
the next level (one level higher), etc. We thus “visit” the elements marked in boldface:2141213121, and
we have 4 marked elements, which checks with the length of oursearch path.yThis material is based upon work supported by the National Research Foundation under grant number 2053748
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Since elements to the left of where we start are irrelevant, we assume that we start with the first element.
We will study the parameterK(a1a2 : : : an), which we might call the number ofweak consecutive maxima,
as we count repetitions of the (current) maximum, and only allow the maximum to change to the next value
(=1+ the previous value).

We did not care about implementations of this data structure. It is quite likely that if one does this, then
some parameters that are similar to ourK, but slightly different, play a rôle. We leave such indoubtedly
interesting variations to the interested reader.

For our probabilistic analysis, we assume that the levelsai are independently generated by the geometric
law with parameterq (with p = 1� q).

We have two parameters, the levelI that has been already reached, and the counterK, that counts how
often the current maximumI has been either repeated or replaced byI + 1.

There is a small technical sublety: Sometimes it is useful toassume that we start at levelr, and withK = 1, beforewe start to read the word. We will call this versionKhri(n). For the skip list analysis, we
assume that the first symbol read defines the starting value; this version will be calledK(n). Of course,
they are intimately linked, and in a slight abuse of notation, we can say thatK(n) =Xr�1 pqr�1Khri(n� 1):
Being precise, this informal equality readsPfK(n) = kg =Xr�1 pqr�1PfKhri(n� 1) = kg:

For the sake of clarity, we give the list of values for the word13112435351:Kh1i Ih1i Kh2i Ih2i Kh3i Ih3i Kh4i Ih4i Kh5i Ih5i
7 3 5 5 5 5 4 5 3 5

We use (standard) notation fromq-analysis:(x)n =Qn�1i=0 (1� xqi) and(x)1 = Qi�0(1� xqi). Note
that(x)n = (x)1=(xqn)1, and the latter form makes sense also forn a complex number.

Furthermore, we useQ = 1=q, andL = lnQ.

2 Generating functions
We consider the random variablesKhri(n) andIhri(n). Let�(n; k; i) = PfKhri(n) = k; Ihri(n) = ig:
(We don’t write the parameterr into this notation, in order not to overload it.)

As a warm-up, we start at levelr = 1. We have the backwards equation�(n; k; i) = �(n� 1; k � 1; i� 1)pqi�1 + �(n� 1; k � 1; i)pqi�1 + �(n� 1; k; i)(1� pqi�1 � pqi)
and�(0; 1; 1) = 1.

We want to translate this into a trivariate generating functionF (z; u; v) = Xn;k;i�0�(n; k; i)znukvi:
Multiplying the backwards equation byznukvi we eventually get after a few routine simplifications (note

thatF (0; u; v) = uv):F (z; u; v) = 11� z�uv + pz�uv + 1q (u� q � 1)�F (z; u; qv)�:
Iterating, this gives F (z; u; v) =Xj�0 (pz)j(1� z)j+1uvqj j�1Yl=0 �uvql + u� q � 1q �:
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Settingu = 1 means ignoring theK-parameter and only counting the level. The corresponding generat-
ing functions can be found in our recent paper (8).

However, we rather ignore theI-parameter here, which means that we setv = 1, to getG(z; u) = F (z; u; 1) =Xj�0 (pz)j(1� z)j+1 uqj j�1Yl=0 �uql + u� q � 1q �:
The modifications for the starting levelr are only minor:F (0; u; v) = uvr, otherwise the same functional

equation. Iteration produces the explicit formF (z; u; v) = F hri(z; u; v) =Xj�0 (pz)j(1� z)j+1u�vqj�r j�1Yl=0 �uvql + u� q � 1q �:
The generating function that is relevant to the skip list, isF(z; u; v) = zXr�1 pqr�1F hri(z; u; v)= uq Xj�1 (pz)j(1� z)j qjv1� qjv j�2Yl=0 �uvql + u� q � 1q �; (2.1)

and since theI-parameter is not relevant,G(z; u) = F(z; u; 1) = uq Xj�1 (pz)j(1� z)j qj1� qj j�2Yl=0 �uql + u� q � 1q �:
Note that [zn+1℄G(z; u) = uq nXj=0(pq)j+1�nj� 11� qj+1 j�1Yl=0 �uql + u� q � 1q �:

There is another way to get this generating function, which is morecombinatorial. There is a unique
decomposition of words:�r�N n fr; (r + 1)g���+�(r + 1)�N n f(r + 1); (r + 2)g���+ : : :�s�N n fs; s+ 1g���+:
This expresses the fact that the level starts atr and ends ats, which must be summed over all possible
choices. If one translates this symbolic form accordingly,one getsG(z; u) = X1�r�s sYi=r zupqi�11� z + zpqi�1(1 + q � u) :
We will give a direct proof in the sequel that the two forms ofG(z; u) coincide, which is surprisingly
difficult. In order to avoid confusion, we temporarily call the second formG(z; u); we will drop the bar
once equality has been established.

We substitutez = w=(w � 1). This substitution is common in the analysis of skip-list structures (Euler
transform). Here is the formula linking coefficients:[zn℄f(z) = 12�i I f(z) dzzn+1 = � 12�i I f(z(w))dw(w � 1)n�1wn+1= (�1)n[wn℄f(z(w))(1� w)n�1 = n�1Xk=0�n� 1k �(�1)n�k[wn�k℄f(z(w)):

Thus G(z; u) = X1�r�s(�1)s+1�r sYi=r wupqi�11� wpqi�1(1 + q � u) :
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Then, by the principle just explained,[zn+1℄G(z; u) = (�1)n+1[wn+1℄(1� w)n X1�r�s(�1)s+1�r sYi=r wupqi�11� wpqi�1(1 + q � u)= (�1)n+1 nXk=0�nk�(�1)k[wn+1�k℄ X1�r;h(�1)h r+h�1Yi=r wupqi�11� wpqi�1(1 + q � u)= nXk=0�nk�(�1)k�1[wk+1℄ X1�r;h(�1)h hYi=1 wupqi+r�21� wpqi+r�2(1 + q � u)= nXk=0�nk�(�1)k�1 qk+11� qk+1 [wk+1℄Xh�1(�1)h hYi=1 wupqi�21� wpqi�2(1 + q � u)= nXk=0�nk�(�1)k�1 (pq)k+11� qk+1 [wk+1℄Xh�1(�1)h hYi=1 wuqi�21� wqi�2(1 + q � u) :
We still have to prove thatuq k�1Yl=0 �uql + u� q � 1q � = (�1)k�1[wk+1℄Xh�1(�1)h hYi=1 wuqi�21� wqi�2(1 + q � u)= [wk+1℄Xh�1 hYi=1 wuqi�21 + wqi�2(1 + q � u) ;
or, in equivalent form:u kYl=1 �uql + u� q � 1� = [wk+1℄Xh�0 hYi=0 wuqi1 + wqi(1 + q � u) :
Now set, withv = 1 + q � u, H(w) := Xh�0 hYi=0 wuqi1 + wqiv ;
then H(w) = wu1 + wv + wu1 + wvH(wq);
or (1 + wv)H(w) = wu+ wuH(wq):
With ak = [wk+1℄H(w), we find(i)ak + vak�1 = u[[k = 0℄℄ + uqkak�1;
or ak = u[[k = 0℄℄ + (uqk � v)ak�1;
from which we find by iteration ak = u kYl=1(uql � v);
as desired.

(i) We use Iverson’s notation:[[P ℄℄ = 1 if P is true, zero otherwise.
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3 Moments
We start from [zn+1℄G(z; u) = uq nXj=0(pq)j+1�nj� 11� qj+1 j�1Yl=0 �uql + u� q � 1q �:
Differentiate this, then setu = 1 to get the average:1 +Q(Q+ 1) nXj=1(pq)j+1�nj� 11� qj+1 j�1Yl=1(ql � 1)= 1 + p(Q+ 1) nXj=1(pq)j�nj� 11� qj+1 (�1)j�1(q)j�1= 1+ p(Q+ 1) nXj=1(pq)j�nj� 1(1� qj+1)(1� qj) (�1)j�1(q)j= 1� p(Q+ 1) 12�i Z n!(�1)nz(z � 1) : : : (z � n) (pq)z(1� qz+1)(1� qz) (q)1(qz+1)1 dz:
This integral representation comes fromRice’s method:We cite the survey paper (3) for that. The contour
includes the poles1; 2; : : : ; n and no others. Changing the contour, one is lead to compute the outside poles
as a compensation. Here, we have to consider the poles atz = 0 and atz = �k = 2�ik=L. The machinery
is explained in more detail in the earlier skip list papers (7; 4).

Thus we compute1 + p(Q+ 1)[z�1℄ n!(�1)nz(z � 1) : : : (z � n) (pq)z(1� qz+1)(1� qz) (q)1(qz+1)1= 1 + Q+ 1L Hn + Q+ 1L ln(p)� (Q+ 1)�� (1 + q)22pq :
We use the (standard) abbreviation � =Xi�1 qi1� qi :
So the averageEK(n + 1) is asymptotic to(Q+ 1) logQ n+ (Q+ 1)
L + Q+ 1L ln(p)� (Q+ 1)�� (1 + q)22pq + Æ(logQ n) + 1:

To compute the second (factorial) moment, we have to differentiateuq nXj=0(pq)j+1�nj� 11� qj+1 j�1Yl=0 �uql + u� q � 1q �
twice with respect tou, and then setu = 1. This leads to2(EK(n + 1)� 1) + 2p(Q+ 1) nXj=1�nj�(�1)j�1 (pq)j(1� qj+1)(1� qj) (q)j � T (j);
with T (j) = j�1Xl=1 ql + 1qql � 1 = �Q(j � 1)� (Q+ 1) j�1Xl=1 ql1� ql :
Now it is easy to replace the discrete parameterj by a complex variablez:T (z) = �Q(z � 1)� (Q+ 1)���Xl�1 ql+z1� ql+z � qz1� qz�:
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Aroundz � 0, T (z) � Q+ 1Lz + p2q � z�L�(Q+ 1) +Q� L(Q+ 1)12 �;
with � =Xl�1 ql(1� ql)2 :
Thus the residue computation atz = 0 leads to2p(Q+ 1)[z�1℄ n!(�1)nz(z � 1) : : : (z � n) (pq)z(1� qz+1)(1� qz) (q)1(qz+1)1 T (z):
Notice the following expansion: (q)1(qz+1)1 � 1� zL�+ z2L22 (�2 + �):
Now Maple computes the variance (fluctuations must be added,coming from the poles at�k). To summa-
rize:

Theorem 1 Expectation and variance of theK(n)-parameter are asymptotic toEK(n) � (Q+ 1) logQ n+ (Q+ 1)
L + Q+ 1L ln(p)� (Q+ 1)�� (1 + q)22pq + Æ(logQ n) + 1;VK(n) � Q(Q+ 1) logQ n+Q(Q+ 1) 
L + (Q+ 1)2 �26L2 +Q(Q+ 1) ln(p)L �Q(Q+ 1)�� (Q+ 1)2�� 2Q(Q+ 1)L � (Q+ 1)2(5Q2 � 16Q� 1)12(Q� 1)2 + ÆVar(logQ n):
The constants� and� are given by� =Xi�1 qi1� qi and � =Xi�1 qi(1� qi)2 ;Æ(x) andÆVar(x) are small periodic functions. Their Fourier coefficients could be given in principle.

Note that we actually did the computations forK(n + 1) instead ofK(n), but that does not make a
difference for the main terms displayed here.

4 The cumulative K-parameter
So far, in terms of the proposed new skip list, we computed the(average) cost to get to the last element.
(Recall that for the analysis we think about the reversed sequence, thus we start with the first element.)
But one also wants to know the cost to get to any of the other elements. So, we compute here theaverage
cumulative cost EK(1) + � � �+ EK(n):
This is easy on the level of generating functions; it just means a multiplication by1=(1� z):11� zG(z; u) = uq 1Xj=0 (pqz)j+1(1� z)j+2 11� qj+1 j�1Yl=0 �uql + u� q � 1q �:
Now we differentiate this with respect tou, and setu = 1:z(1� z)2 + (Q+ 1) 1Xj=1 (pz)j+1(1� z)j+2 qj1� qj+1 (�1)j�1(q)j�1:
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This time it is more convenient to read off the coefficient ofzn:n+ (Q+ 1) 1Xj=1 pj+1[zn�j�1℄ 1(1� z)j+2 qj1� qj+1 (�1)j�1(q)j�1= n+ (Q+ 1) n�1Xj=1 pj+1� nj + 1� qj1� qj+1 (�1)j�1(q)j�1= n+Q(Q+ 1) nXj=2 pj�nj� qj(1� qj)(1� qj�1) (�1)j(q)j�1:
Thus, using Rice’s integral once again, which this time usesa contour that enclosed the poles2; : : : ; n we
must look atn�Q(Q+ 1)[(z � 1)�1℄ n!(�1)nz(z � 1) : : : (z � n)pz qz(1� qz)(1� qz�1) (q)z�1= n�Q(Q+ 1)[z�1℄ n!(�1)n(z + 1)z(z � 1) : : : (z � n+ 1)pz+1 qz+1(1� qz+1)(1� qz) (q)z= n+ nQ(Q+ 1)[z�1℄ (n� 1)!(�1)n�1(z + 1)z(z � 1) : : : (z � n+ 1)pz+1 qz+1(1� qz+1)(1� qz) (q)z :
This is eventually evaluated with the help of Maple.

Theorem 2 The expected value of the cumulativeK(n)-parameter is given byn�(Q+ 1)Hn�1L + (Q+ 1) ln(p)L � (Q+ 1)�� Q+ 1L � Q2 + 32(Q� 1) + Æcum(logQ n)�:
Of course, one could replaceHn�1 by lnn+ 
.

5 Additional analysis
As we explained in the introduction, in our parameter, stepsdownwards in the header structure as well as
the single step from to the header to the actual data are not included. The latter one is just one step, so it
does not require analysis. The first one, however, is the difference between themaximumof the word and
the levelI finally reached.

Now it is a folklore result that the maximum (sometimes called height) is� logQ n (see (11; 6)). The
level that is reached at the end is a parameter typically encountered inapproximate counting,see (2; 8; 5).

We find it from the generating function (2.1)F(z; u; v) = uq Xj�1 (pz)j(1� z)j qjv1� qjv j�2Yl=0 �uvql + u� q � 1q �
by settingu = 1:F(z; 1; v) = 1q Xj�2 (pz)j(1� z)j qjv1� qjv (�1)j�1 j�2Yl=0 �1� vql�+ 1q pz1� z qv1� qv :
Differentiating w.r.t. v, followed byv = 1 gives the generating function of the average of the final level
reached: ��vF(z; 1; v)���v=1 = 1q Xj�2 (pz)j(1� z)j qj1� qj (�1)j(q)j�2 + 1p z1� z :
Now, reading off the coefficient ofzn+1, we get1q n+1Xj=2 pj� nj � 1� qj1� qj (�1)j(q)j�2 + 1p = nXj=1 pj+1�nj� qj1� qj+1 (�1)j�1(q)j�1 + 1p :
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The residue computation as before produces the asymptotic expansion of the average level, reached aftern+ 1 (or alson) random steps:logQ n+ ln(p)L � �+ 
L + 12 + Ælevel(logQ n):
Since the average of the maximum islogQ n+ 
L + 12 + Æmaximum(logQ n);
the difference of the two parameters is (apart from fluctations) asymptotic to�� ln(p)L .

6 The K-parameter for permutations
In this section, we consider, instead of words, permutations (which can also be interpreted as special words).
The definition of theK(n)-parameter is the same. The analysis is easy, and there are probably no applica-
tions, so we keep this section rather short.

Consider the probability�(n; l) that theK(n)-parameter is� l. Then the permutation must look like(r)w1(r + 1)w2(r + 2) : : : (r + l� 1)wl:
Note thatw1 : : : wl is any permutation ofn � l letters; there are(n � l)! of them. The number of ways to
split them intol groups is

�n�1n�l�. The number of choices for the first letterr = 1; : : : ; n+1�l is (n+1�l).
Thus �(n; l) = 1n! (n� l)!�n� 1n� l�(n+ 1� l) = 1(l � 1)! � 1n 1(l � 2)! :
Therefore we find the expectation:EK(n) � nXl=1 �(n; l) � �1� 1n�e:
A similar computation gives the variance (again apart from exponentially small terms):VK(n) � e(3� e) + e(2e� 3)n � e2n2 :
7 Conclusion
TheK-parameter analysed in this paper is the analogue of the combined horizontal and vertical cost in the
original skip list. This parameter ison averageasymptotic to� Q logQ n, as shown for instance in (9; 7).
Our present analysis gives a leading term(Q + 1) logQ n, so the logarithmic behaviour is preserved (as
predicted in (1)), but with a larger constant.

In the section on the cumulativeK-parameter we discussed theaverageof the total search cost, the
parameterpath length, which, for a given worda1 : : : an is defined to beP(a1 : : : an) := K(a1 : : : an) +K(a2 : : : an) + � � �+K(an):
For the average this does not make a difference, but higher moments and distributionare different. This
parameter is, apparently, much harder to analyse. We hope toreport on it in a subsequent publication.
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