
FIFO Queuing of Constant Length Fully
Synchronous Jobs

Vandy Berten, Raymond Devillers and Guy Louchard

Département d’informatique, CP212
Université Libre de Bruxelles

B-1050 Bruxelles, Belgium
{vandy.berten,rdevil,louchard}@ulb.ac.be

Abstract. The paper examines the behaviour of a saturated multipro-
cessor system to which fully synchronous parallel jobs are submitted. In
order to simplify the analysis, we assume constant length jobs, a non-
preemptive scheduling and a FIFO queue. We determine in particular
the number of used CPUs.
Keywords: FIFO scheduling, multiprocessor platforms, Next-Fit Bin-
packing.

1 Introduction

In a (computational) Grid, clients submit their jobs to a job broker, who sends
them to well chosen computing elements (or CE), using adequate deterministic
or probabilistic strategies, based on static and/or dynamic information on the
system and its history. To do so in a clever manner, it is necessary to have a
good knowledge of the consequences of a choice, hence of the behaviour of a
CE when jobs with some characteristics are sent to it at some rate. Since those
behaviours are usually rather complex in realistic environments, it is common
usage to make some (more or less justified) simplifications [5,6,1]. All of them
simplify some job characteristics by models using standard stochastic processes
or probabilistic distributions. Such characteristics are for instance arrivals or job
lengths [5] or systems breakdowns [6].

Here, following typical grid features, we shall assume that a job may need
more than one processor to perform its task, that successive jobs are independent
from each others, that we know beforehand the distribution of the number of
needed parallel processes (called the width of the job, assumed not to exceed the
number s of processors of the CE), that the job is fully synchronous (i.e., all its
processes have to start and finish simultaneously, because for instance they need
to communicate in a synchronous fashion), that all the CPUs are identical, that
due to the full synchrony of the jobs the CPU scheduling is non-preemptive, and
that in order to avoid starvation problems the queue is managed as FCFS (or
first come first served, or FIFO). Another popular strategy is FF (or first fit),
which allow trespassings when the first jobs in the queue are too large for the
current number of free CPUs, but smaller jobs are present further in the queue.

FF usually leads to a better CPU utilisation, but at the price that large jobs
may be indefinitely delayed.

In order to further simplify the analysis, we shall assume that the system is
saturated, i.e. there is always at least one job waiting in the input queue, and that
all jobs have the same length, i.e. they last the same time, used as the time unit.
It may seem curious to consider a saturated system, since then the queue will
usually grow beyond any limit; the justification is manyfold; first, it is common
that the load changes with time, and it may happen that during some periods the
system is indeed saturated, but the non-saturated periods in between will allow
to resorb the queue; next, our study will allow to determine when saturation
does occur, and this is not trivial for multiprocessor jobs; finally, we plan to
examine in more details the distribution of the number of used CPUs, and the
saturated case provides an upper-bound approximation to the CPU usage. The
unit length hypothesis, besides that it greatly simplifies the analysis, also tends
to increase the CPU usage.

With those last hypotheses, we shall be allowed to divide the time in time
slots of length 1. More exactly, initially (starting from an empty system, hence
when the saturation hypothesis is not valid yet), we may have jobs starting
at any time, but when the system will be saturated and if there is a non null
probability to have jobs of width ≥ d(n + 1)/2e, we are sure there will be a
resynchronization, as illustrated on figure 1.

t

CPU 4

CPU 3

CPU 2

CPU 1

Resynchronization

Fig. 1. Fixed length job, with resynchronization. After this resynchronization,
the time line can be divided in slots.

To the best of our knowledge, this kind of system has not been studied in
detail up to now. Of course, many other related problems remain to be further
studied, like the behaviour of Bernoulli brokerings, index policies [1,7,4,3], . . . , in
order to define efficient brokering policies for a Grid with such servers. However,
we do not aim here at finding an efficient strategy, but instead at studying the
behaviour of saturated systems. Such a study could in a second step be helpful
in finding efficient brokering strategies.

Moreover, the problem we consider is closely related to the problem of on-line
algorithms for bin-packing, more exactly to the Next-Fit heuristics [2], which
consists in putting items of various (monodimensional) sizes in bins, and in

opening a new bin as soon as the next considered item does not fit in the current
bin. We compute here the average unused place in bins (and in some case the
distribution) if the number of items tends towards the infinite.

The aim of this paper is then to computed the average number of used CPUs
in a saturated system (receiving more work than what it is able to handle) com-
posed of s CPUs, and where jobs are composed of several processes, each having
a unitary execution length. In some configurations, we give the average number
of used CPUs, and in some specific situations, we provide the full distribution,
which means, at any time, the probability to have k(≤ s) used CPUs.

This paper is structured as follows. In a first time, we consider two simple
cases: the system is composed of 2 (section 2.1) and 3 (section 2.2) CPUs. Those
two simple examples help in understanding the general case we present in section
2.3, where the system can have any size. In that general case, we provide the full
distribution, but only in a non-closed form, i.e. in the form of a linear system
which has to be solved for any chosen distribution.

We then present the distribution giving the worst CPU usage (section 2.4),
for which we have a closed form for the distribution, and we finally present in
section 2.5 the equidistributed case, where each size has an equal probability to
occur.

2 Average number of used CPUs

Let us denote by wn the probability that a job needs n CPUs (n ≤ s) and by
P ik the probability that at slot i, k CPUs are used. We define an n-job as being
a job requiring n CPUs, and an n-slot as a slot where n CPUs are used.

In order to understand our argument, we will first consider two particular
cases (when we have 2 and 3 CPUs), then we will analyze the general case.

2.1 Case s = 2

We will first have a look at the first slot. A 1-slot occurs at the first slot in only
one case: the first job in the queue is a 1-job, immediately followed by a 2-job.
For having a 2-slot, we have either one 2-job, or two 1-jobs. Then,

P 1
1 = w1w2

P 1
2 = w2 + w1w1.

For other slots, the only possibility of having a 1-slot is that the previous
slot was a 2-slot, and the two next jobs in the queue are respectively one 1-job
(which runs during this slot) and one 2-job (which is the first waiting job during
this slot).

In the case of a 2-slot, the previous slot is either a 1-slot, or a 2-slot. If the
previous slot is a one slot, we know that the first waiting job is a 2-job. A 1-slot is
then necessarily followed by a 2-slot. If the previous slot is a 2-slot, we have two
possibilities: either the current job is a 1-job, or there are two 1-jobs running.
We do not have any constraint about future jobs. Then,

{
P i1 = P i−1

2 w1w2

P i2 = P i−1
1 + P i−1

2 (w2 + w1w1).

Or, in a matrix form:

(
P i1 P

i
2

)
=
(
P i−1

1 P i−1
2

)
.

(
0 1

w1w2 w2 + w1
2

)
Eigenvalues of this system are 1 and w1w2, then this system converges to-

wards the normalized (P1 + P2 = 1) solution of:

(
P1 P2

)
=
(
P1 P2

)
.

(
0 1

w1w2 w2 + w1
2

)
Or,

P1 =
w1w2

1 + w1w2
and P2 =

1
1 + w1w2

.

The average number of used CPUs is then 1 · P1 + 2 · P2, or 1 +
1

1 + w1w2
.

In this case, the worst case of the number of used CPUs is reached when w1 =

w2 =
1
2

, where
9
5

= 1.8 CPUs are used in the average.

2.2 Case s = 3

Again, we start with the first slot. The only case where only one CPU is used
during the first slot is the one where the first job needs 1 CPU and the second one
needs 3 CPUs, and is processed at the next slot. If the second job had needed 1
or 2 CPUs, it would have started at this first slot. If two slots are used at the first
slot, we need either two monoprocessor jobs, or one bi-processor job, followed by
a job that cannot fit in the remaining CPU. If all CPUs are used, there are four
possibilities (three 1-job, one 1-job followed by one 2-job, one 2-job followed by
one 1-job, or a 3-job), and we do not have any constraints on the first waiting
job. We therefore have

P 1
1 = w1w3

P 1
2 = (w1w1 + w2)(w2 + w3)
P 1

3 = w1w1w1 + w1w2 + w2w1 + w3

where wk is the probability that a job asks for k CPUs.
Let us now look at other slots. It is possible to have one used CPU only if

the previous slot was full, the first waiting job is a 1-job, and the second waiting
job is a 3-job. If the previous slot weren’t full, the first job would have been
started at that previous slot, and if the next job is not a 3-job (i.e. either a 1-
or a 2-job), it would have been started at the present slot.

The case “two used CPUs” is a bit more complex:

– The first waiting job during that slot is either a 2-job or a 3-job, because a
1-job would have been started at the current slot;

– It is not possible that the previous slot were a 1-slot, because we know that
if a slot is a 1-slot, the first waiting job during that 1-slot execution is a
3-job;

– If the previous slot was a 2-slot, we already know that the first job waiting
at the beginning of this slot is either a 2-job or a 3-job, out of which only the
2-case interests us (a 3-job would not lead to a 2-slot), with a conditional
probability of

w2

w2 + w3
.

– If the previous slot is a 3-slot, we can either have a 2-job or two 1-jobs
afterwards, and we have no previous knowledge.about the present situation.

The case 3-slot is rather similar:

– We do not have any constraint on the first waiting job during a 3-slot;
– The job waiting during a 1-slot is always a 3-job, so if the previous slot was

a 1-slot, we already know that the current slot is a 3-slot;
– If the previous slot is a 2-slot, the first job in the queue is either a 3- or a

2-job, and the only ways to get 3 busy CPUs from these kinds of situation
is either a 3-job, or a 2-job followed by a 1-job;

– If the previous slot is a 3-slot, we can have all combinations giving 3 used
CPUs.

We can summarize for i > 0:

P i1 = P i−1
3 w1w3

P i2 = P i−1
2

w2

w2 + w3
(w2 + w3) +P i−1

3 (w2 + w1w1)(w2 + w3)

P i3 = P i−1
1 +P i−1

2

(w3

w2 + w3
+

w2w1

w2 + w3

)
+P i−1

3 (w1
3 + w1w2 + w2w1 + w3).

In a matrix form, we have:(
P i1 P i2 P i3

)
=

(
P i−1

1 P i−1
2 P i−1

3

)
·

 0 0 1

0 w2
w3 + w2w1

w2 + w3
w1w3 (w2 + w1

2)(w2 + w3) w1
3 + 2w1w2 + w3

The matrix is clearly stochastic: every element is lower of equal to 1, and

the sum of each row equals 1. Moreover, eigenvalues can easily be obtained with
a computer tool such as maple. The largest one is 1, and the two others are in
]0, 1[. The system then converges towards the normalized (P1 + P2 + P3 = 1)
solution of:(

P1 P2 P3

)
=
(
P1 P2 P3

)
·

 0 0 1

0 w2
w3 + w2w1

w2 + w3
w1w3 (w2 + w1

2)(w2 + w3) w1
3 + 2w1w2 + w3

2.3 General Case

Let us first introduce some notations. Let βk be the probability to have a suc-
cession of jobs using exactly k CPUs (with by definition β0 = 1, corresponding
to a empty sequence), and γk the probability for a given job that this job needs
a number of CPUs greater or equal to k. We have, for k ≥ 1,

βk =
k∑
i=1

wiβk−i, and γk =
s∑
i=k

wi.

We can now have a look at the first slot. The probability to be a k-slot (k ≤ s)
is the probability that the first jobs need k CPUs (βk), and that the first waiting
job during this slot cannot fit in the s− k remaining CPUs (γs−k+1). Therefore,

P 1
k = βk · γs−k+1.

And for a slot i > 1, we know that:

– The first job in the queue during this k-slot is either a (s − k + 1)- or a
(s− k + 2)- . . . or a s-job. This gives the γs−k+1 of Equation 1;

– A k-slot can never follow a j-slot if j ≤ s − k, otherwise the current slot
jobs would have started at the previous slot. It is why the first summation
in equation 1 goes from j = s− k + 1 up to s;

– Let us assume that the previous slot is a j-slot with s− k + 1 ≤ j ≤ s:
• because the previous slot was a j-slot, we already know that the first job

in the queue before the beginning of the ith slot was either a s− j + 1-
or a s − j + 2- . . . or a s-job. That gives the γs−j+1 below the fraction
(conditional probability),

• knowing that the first job in the queue before that slot needs between
s− j + 1 (see previous item) and k (the slot i is a k-slot) CPUs, we find
directly the upper term of the fraction.

Therefore,

P ik = γs−k+1

s∑
j=s−k+1

P i−1
j

k∑
`=s−j+1

w`βk−`

γs−j+1

= γs−k+1

s∑
j=s−k+1

P i−1
j

βk −
s−j∑̀
=1

w`βk−`

γs−j+1

 . (1)

A deeper analysis should be done in the case where some wi are null. Indeed,
this could potentially lead to indeterminate values, if both numerators and de-
nominators are null. However, we have several reasons for thinking that this will
not cause problems:

– This could only lead to problem if the last values of w are null, or if ∃K <
s : wi = 0 ∀i ≥ K. If such a K exists, then γ(k) = 0 ∀k ≥ K. If some wi
are null but with non null probabilities for higher indices, this will not be
problematic;

– We know that each factor multiplying P i−1
j is a probability, then in [0, 1],

even if the factor is indeterminate;
– We observe experimentally that if some wi are null for i ≥ K with the K

defined here above, P 1
k = 0 ∀k < S −K + 1, and this 0 seems to propagate

to further steps. Then each time a γ = 0 appears at the denominator, this
is apparently as a factor of a P i−1

j = 0, and can be ignored;
– It seems that if we do not consider wi = 0 but limwi→0 instead, ambiguities

can be resolved easily.

We let this more rigorous analysis to further research.
The initial condition may be expressed by saying that the slot before the first

slot is always a s-slot; our initial condition is then:

P 0
k =

{
1 if k = s,
0 otherwise.

and Equation (1) may be applied to the first slot as well (for j = s):

P 1
k = 1

βk
γ1
γs−k+1.

and, because γ1 = 1, we retrieve P 1
k = βk · γs−k+1.

In a matrix form, Equation (1) can be rewritten as:(
P i1 · · · P ij · · · P is

)
=

(
P i−1

1 · · · P i−1
k · · · P i−1

s

)

0 0 · · · 0 A1,s

0 0 · · · A2,s−1 A2,s

...
...

...
0 As−1,2 · · · As−1,s−1 As−1,s

As,1 As,2 · · · As,s−1 As,s

 (2)

where

Aj,k =

0 if j < s− k + 1,
γs−k+1

γs−j+1

(
βk −

s−j∑̀
=1

w`βk−`

)
otherwise.

As A is stochastic, we know that 1 is an eigenvalue, and that every eigenvalue
module is in [0, 1]. Hence, the convergence is ascertained if there are no other
eigenvalues with 1 as module. We conjecture that this is true, as exhibited by
numerous numerical checks.

Assuming that this system converges, it will converge towards the normalized

(
s∑
i=1

Pi = 1) solution of the system P = AP . The average number of used CPUs

becomes then
s∑
i=1

iPi. Hence, we get

Theorem 1. In the case of general job width distribution, with saturated system,
if the job length is fixed and the system is synchronized, under the convergence
hypothesis, the average number of used CPUs on a CE having s CPUs is

s∑
k=1

kPk

where the Pk’s are solutions of the linear system
Pk =

s∑
j=s−k+1

Pj
kP

`=s−j+1
w`βk−`

γs−j+1
γs−k+1

s∑
i=1

Pk = 1

with β0 = 1, βk =
k∑
i=1

wiβk−i and γk =
s∑
i=k

wi.

2.4 Worst Case

As the average number depends upon the job width distribution, at least one
distribution should give the worst average CPU usage. We do not have a formal
proof about this worst distribution, but experiments we made let us believe that
this distribution is pretty simple, and depends on the parity of the number s of
CPUs.

In the case of odd s, we have s = 2n + 1 for some n ∈ N. It seems in this
case that the worst CPU usage is reached when wn+1 = 1 (and other ones are
null). In this case, the average number of used CPUs is naturally n+ 1. This is
rather logically a “bad” distribution: if we had some narrower jobs, they could
be run in parallel with a (n+ 1)-job, and increase the number of used CPUs. If
we had some wider jobs, when they would run (necessarily not in parallel with
a (n + 1)-job), they use more CPUs than a (n + 1)-job, and then increase the
average.

The case of even s (s = 2n) is a bit more complicated. It seems experimentally
that the worst case is reached when two widths are possible: n and n + 1. We
then have wn = x and wn+1 = 1− x for some x. Assuming this configuration is
actually the worst, we can find the value of x minimizing the CPU usage.

With this distribution, we can only have n-, (n + 1)- and s-slots, the two
firsts running resp. a n- and a (n+1)-job, the third one running two n-jobs. The
only non null values of P are then Pn, Pn+1 and Ps. With this distribution, we
also get particular values for β and γ; a few computations yield that:

βk =

0 if k < n
x if k = n
1− x if k = n+ 1
0 if n+ 1 < k < s
x2 if k = s

and γk =

1 if k ≤ n
1− x if k = n+ 1
0 if k > n+ 1.

Now, non null values for the system P = AP can be found:

Pn = Pn · 0 + Pn+1 · x(1− x) + Ps · x(1− x) (3)
Pn+1 = Pn · 1 + Pn+1 · (1− x) + Ps · (1− x) (4)

Ps = Pn · 0 + Pn+1 · x2 + Ps · x2 (5)

and the normalization equation

Pn + Pn+1 + Ps = 1. (6)

We have then:

Pn = x(1− x)(Pn+1 + Ps) from Eq. (3)
= x(1− x)(1− Pn) from Eq. (6)

= 1− 1
1 + x− x2

Pn+1 = Pn + (Pn+1 + Ps)(1− x) from Eq. (4)
= Pn + (1− Pn)(1− x) from Eq. (6)
= 1− x

1 + x− x2

Ps = 1− Pn − Pn+1 from Eq. (6)

= 1− 1− x
1 + x− x2

.

The average number of used CPUs is

nPn + (n+ 1)Pn+1 + sPs

= nPn + (n+ 1)Pn+1 + 2n(1− Pn − Pn+1)
= 2n− nPn − (n− 1)Pn+1

= 2n− n(1−A)− (n− 1)(1− xA) where A = (1 + x− x2)−1

= 1−A(x− nx− n).

This average is minimal when
x− nx− n
1 + x− x2

reaches is maximum, which is the

case when x =
√
n2 + n− 1− n

n− 1
. If we inject this worst case x in the average,

we get the following average:

2n(n+ 1)− 2− n(n+ 1)
√
n2 + n− 1

2n(n+ 1)− 2− (3n− 1)
√
n2 + n− 1

.

Notice that in the case of two CPUs (n = 1), the worst average is
9
5

, with

w1 = w2 =
1
2

, as obtained before. And for large platforms (when n tends towards

∞), x tends towards 0; the worst case is then reached when there is only one
possible width, just above the half of the number of servers (n+ 1).

2.5 Equidistributed Case

While we do not have a general explicit solution for the system of Theorem 1 so
far, we shall show that we can obtain an explicit result in the case of equidis-
tributed lengths, that is, wi = w = 1

s ∀i. This equidistributed case is neither
optimal nor a worst case in general, nor more realistic than other distributions,
but simply it allows to go further. First of all, we have that, ∀k > 1

βk = w

k∑
i=1

βk−i

= w

k−1∑
i=0

βi (7)

= wβk−1 + w

k−2∑
i=0

βi︸ ︷︷ ︸
=βk−1

= (w + 1)βk−1.

Furthermore, we know that β0 = 1 and β1 = w, so, for k ≥ 1

βk = w(w + 1)k−1. (8)

γk can be simplified as well: we find directly that γk = (s−k+ 1)w. We have
now:

P 1
k = βkγs−k+1 = w(w + 1)k−1wk = w2(w + 1)k−1k,

and

P ik =
s∑

j=s−k+1

P i−1
j

k∑
`=s−j+1

wβk−`

jw
kw

 .

We have that

w

k∑
`=s−j+1

βk−` = w

k−s+j∑
n=0

βn
by (7)

= βk−s+j+1
by (8)

= w(w + 1)k−s+j−1.

Therefore,

P ik =
s∑

j=s−k+1

(
P i−1
j

w(w + 1)k−s+j−1

j
k

)

=
w

(w + 1)s+1
k(w + 1)k

s∑
j=s−k+1

(
P i−1
j

(w + 1)j

j

)
.

We need now to show that this system converges. If we express that expression
in a matrix form, we have the same form as Equation (2), with

Aj,k =
{

0 if j < s− k + 1,
k
jw(w + 1)k+j−s−1 otherwise.

We can easily show that the matrix A is stochastic; we need for that, that
each element of A is in [0, 1] and that the sum on a column is equal to 1.
Because Ai,j is obviously non-negative for each i, j, we just need to prove that
s∑

k=1

Aj,k = 1,∀j.

s∑
k=1

Aj,k = w
j

s∑
k=s−j+1

k(w + 1)k+j−s−1 = w(w+1)j−s−1

j

s∑
k=s−j+1

k(w + 1)k︸ ︷︷ ︸
=(1+w)s−j(1+s)j

= w
j(1+w) (1 + s)j =

1
s +1

1+ 1
s

= 1.

The convergence of the system may be shown by an analysis similar to the one
we shall conduct now, but as it is a bit lengthy and tedious, we do not include
it here. We have

Pk = k w
(w+1)s−k+1

s∑
j=s−k+1

Pj
(w+1)j

j ∀k ∈ [1, s]

s∑
k=1

Pk = 1.

The first equality is rewritten

Pk
k

(w + 1)k =
s∑

j=s−k+1

w

(w + 1)s+1
(w + 1)2k

Pj(w + 1)j

j

We denote αi = Pi

i (w + 1)i and ψ = w
(w+1)s+1 . Therefore,

αk = ψ(w + 1)2k
s∑

j=s−k+1

αj (9)

and if S =
s∑
j=1

αj ,

αk = ψ(w + 1)2k(S −
s−k∑
j=1

αj). (10)

We want to express αs−i instead of αk:

αs−i = ψ(w + 1)2(s−i)

S − i∑
j=1

αj

by (9)

= ψ(w + 1)2(s−i)

S − i∑
j=1

(
ψ(w + 1)2j

s∑
u=s−j+1

αu

)
= ψ(w + 1)2(s−i)

S − i∑
j=1

(
ψ(w + 1)2j

j−1∑
u=0

αs−u

)
We denote α̃i = αs−i:

α̃i = ψ(w + 1)2(s−i)

S − i∑
j=1

(
ψ(w + 1)2j

j−1∑
u=0

α̃u

)
= ψ(w + 1)2(s−i)

S − ψ i−1∑
u=0

i∑
j=u+1

(w + 1)2jα̃u

 .

We know that
i∑

j=u+1

(w + 1)2j =
(w + 1)2[(w + 1)2i − (w + 1)2u]

w(w + 2)
. Therefore,

α̃i = ψ(w + 1)2(s−i)
(
S − ψ

i−1∑
u=0

(w + 1)2[(w + 1)2i − (w + 1)2u]
w(w + 2)

α̃u

)
which is a linear recurrence with non constant coefficients. We then have to find
the generating function F (z) =

∞∑
i=0

ziα̃i. Let us compute that function in several

parts:

α̃i = ψ(w + 1)2sS
1

(w + 1)2i
− ψ2 (w + 1)2s+2

w(w + 2)

i−1∑
u=0

α̃u

+ ψ2 (w + 1)2s+2

w(w + 2)

i−1∑
u=0

α̃u
(w + 1)2(i−u)

⇒
∞∑
i=0

ziα̃i = ψ(w + 1)2sS
∞∑
i=0

(
z

(w + 1)2

)i
(11)

− ψ2 (w + 1)2s+2

w(w + 2)

∞∑
i=0

i−1∑
u=0

(α̃uzi) (12)

+ ψ2 (w + 1)2s+2

w(w + 2)

∞∑
i=0

i−1∑
u=0

ziα̃u
(w + 1)2(i−u)

(13)

With a few computations,

(11) = ψ(w + 1)2sS
∞∑
i=0

(
z

(w + 1)2

)i
= ψ(w + 1)2(s+1)S

1
(w + 1)2 − z

(12) = ψ2 (w + 1)2s+2

w(w + 2)

∞∑
i=0

i−1∑
u=0

(α̃uzi) = ψ2 (w + 1)2s+2

w(w + 2)
z

1− z
F (z)

(13) = ψ2 (w + 1)2s+2

w(w + 2)

∞∑
i=0

i−1∑
u=0

ziα̃u
(w + 1)2(i−u)

= ψ2 (w + 1)2s+2

w(w + 2)
z

(w + 1)2 − z
F (z)

Therefore,

F (z) = ψ(w + 1)2(s+1)S
1

(w + 1)2 − z
− ψ2 (w + 1)2(s+1)

w(w + 2)
z

1− z
F (z)

+ψ2 (w + 1)2(s+1)

w(w + 2)
z

(w + 1)2 − z
F (z)

From which we can obtain

F (z) = Sw(w + 1)1+s
1− z

(1 + w − z)2

Finally, we have

α̃n = w(w + 1)s−1S
1− wn

(w + 1)n

We can now extract Pk from α̃k’s definition:

Pk =
α̃s−kk

(w + 1)k
=
w(w + 1)s−1S 1−w(s−k)

(w+1)s−k k

(w + 1)k
= (wk)2(w + 1)−1S =

Sw2

w + 1
k2

We know furthermore that
s∑

k=1

Pk = 1, and that w = 1
s . We can then find S:

1 =
s∑

k=1

Sw2

w + 1
k2 =

Sw2

w + 1
2s3 + 3s2 + s

6
=

S

1 + s

2s2 + 3s+ 1
6

Therefore,

S =
6(1 + s)

2s2 + 3s+ 1
=

6
2s+ 1

and

Pk =
6k2

s(1 + 2s)(1 + s)

and

Ek[Pk] =
3s(1 + s)
2(1 + 2s)

Finally, we obtain that the average number of free CPUs is

s− Ek[Pk] =
s(s− 1)
2(1 + 2s)

which is compatible with the numerical resolutions we made on A, and the
simulations we made. The proportion of free CPUs is then

s− 1
2(1 + 2s)

which tends towards
1
4

when s tends towards ∞. We then get

Theorem 2. In the case of equidistributed job width distribution between 1 and
s (the CE size), with saturated systems, if the job length is fixed, the average
number of used CPUs is

3s(s+ 1)
2(1 + 2s)

.

This last result allows to determine the saturation point ν̃ of such a system,
i.e., the normalized arrival rate from which the system becomes (possibly after
some transitory phase) saturated. If the average job arrival rate is λ,W =

∑
k

kwk

is the average job width and M is the average job length (here M = 1, from
the hypotheses and the choice for the time unit), the normalized arrival rate
is defined as ν , λ.W.M

s . It is well-known that, for sequential jobs (i.e., when
W = 1), the saturation point is given by ν̃ = 1, but when parallel jobs are
allowed, it occurs (generally slightly) before 1. We then get

Theorem 3. In case of equidistributed job width distribution between 1 and s
(the CE size), if the job length is fixed, the point of saturation ν̃ is

3(s+ 1)
2(1 + 2s)

.

Proof. It is known that, for an unsaturated system, i.e. when ν ≤ ν̃, the average

number of used CPUs is νs, and from theorem 2, it is
3s(s+ 1)
2(1 + 2s)

for a saturated

system, i.e. when ν > ν̃; ν̃ can now easily be found (in the case of constant
execution time, and equidistributed job width between 1 and s) as being the
intersection between those to lines:

ν̃s =
3s(s+ 1)
2(1 + 2s)

.

Therefore,

ν̃ =
3(s+ 1)
2(1 + 2s)

.

�

Experiments we made have confirmed these theoretical predictions. Notice
that this saturation point equals of course 1 when s = 1, and tends towards 3

4
when s tends towards ∞.

3 Conclusion

We have analyzed the behaviour of a FIFO queue for a saturated multiprocessor
system with fully-synchronized fixed length parallel jobs. We have characterized
the distribution of the number of used CPUs, solved it completely for bi- or
tri-processors, determined the worst case and produced a closed formula for the
distribution (hence for the average) of the number of used CPUs in the case of
equidistributed job width, determining as a consequence the saturation point in
this last case.

The main contribution of this paper is a deep analysis of the maximal utiliza-
tion of a platform composed of several processors, on which fully-synchronous
parallel jobs run. Such an analysis is very useful for dimensioning a computing
system, or in order to tune the (meta-)scheduler.

The studied model is rather simple, and more realistic models should be con-
sidered in a near future. For instance by raising the execution length hypothesis,
and by considering other models, such as for instance exponential, Log-Normal
or Log-Uniform service times. However, these extensions will certainly require a
rather different approach.

References

1. Vandy Berten. Stochastic Approach to Brokering Heuristics for Computational
Grids. PhD thesis, Université Libre de Bruxelles, 2007.

2. E.G. Coffman, Jr., M.R. Garey, and D.S. Johnson Approximation Algorithms for
Bin-Packing – An Updated Survey . In Algorithm Design for Computer System
Design, ed. by Ausiello, Lucertini, and Serafini. Springer-Verlag, 1984.

3. Ernemann, C., Hamscher, V., Schwiegelshohn, U., Streit, A., and Yahyapour, R.
On Advantages of Grid Computing for Parallel Job Scheduling. In Proceedings
of the 2nd IEEE International Symposium on Cluster Computing and the Grid
(CC-GRID 2002) (May 2002).

4. Feitelson, D. G., Rudolph, L., Schwiegelshohn, U., Sevcik, K. C., and Wong, P.
Theory and Practice in Parallel Job Scheduling. In Job Scheduling Strategies for
Parallel Processing, D. G. Feitelson and L. Rudolph, Eds. Springer Verlag, 1997,
pp. 1–34.

5. Emmanuel Medernach, Workload Analysis of a Cluster in a Grid Environment,
in Job Scheduling Strategies for Parallel Processing, Lect. Notes Comput. Sci.
vol. 3834, pp 36–61, 2005

6. N. Thomas, J. Bradley and W. Knottenbelt, Stochastic Analysis of Scheduling
Strategies in a Grid-based Resource Model, IEE Proceedings-Software 151:5, pp
232–239, 2004.

7. Richard R. Weber and Gideon. Weiss, On an index policy for restless bandits,
Journal of Applied Probability, vol 27, pp 637-648, 1990.

