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1 Introduction

Despite its title, this article does not delve into polit-
ical issues in Sweden. We analyze a protocol to select
one among n players without a centralized agent, a
problem that occurs often in distributed computing.
The protocol and its variants that we examine here
is inspired by the k-silent elimination protocol pro-
posed by a team of Swedish researchers a few years
ago [1], hence the name.

In general, leader election protocols (see [13, 2, 7, 9,
6, 11] and references therein) have the goal to choose
one element (a player) out of n > 0 given elements,
in a distributed decentralized manner. We consider
here protocols that start with n active players and
then proceed in a series of rounds. At each round,
each player flips a biased coin. With probability q
the player tosses heads and passes to the next round.
Otherwise, with probability p = 1 − q, the player
tosses tails and becomes inactive, remaining so for
the rest of the protocol, at least in principle.

Hence, if Wt denotes the number of active players
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after round t, we have W0 = n and for t > 0,

Wt = Bin(Wt−1, q), if Wt−1 > 0.

In all leader election protocols the process will (suc-
cessfully) finish when at some round we have Wt = 1.
This single remaining player is then declared the
leader.

Different leader election protocols result from the
way the protocol proceeds in two special situations:

1. Stalled rounds. We say that a round is stalled if
every active player tosses heads, that is, round t
is stalled if Wt = Wt−1 > 0.

2. Null rounds. We say that a round is null if every
active player tosses tails, that is, round t is null
if Wt = 0.

In some protocols, the process finishes immedi-
ately after a stalled round, declaring every player a
“leader”. For those protocols, it is of interest to com-
pute the probability that a single leader is elected. In
other protocols, stalled rounds constitute no special
event, and the rounds simply proceed as usual.

Null rounds pose a different problem to the pro-
tocol. In the classical leader election protocol, the
players that became inactive in the null round get re-
activated for the next round. Thus the number Wt of
players still active at the end of round t is now given
by

Wt = Bin(Wt′ , q)

where t′ is the largest t′ < t such that Wt′ > 0. Other
protocols will terminate after the first null round or
after some number of null rounds have occurred. In
those protocols, the probability of successfully declar-
ing a leader (or more) is one of the fundamental
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quantities of interest. Other interesting parameter
for these protocols is the number of active players
in the last non-null round before the protocol stops
(called the leftovers).

In this paper, we consider a protocol parameter-
ized by a value τ ≥ 1. The protocol is as the classi-
cal protocol except that it will stop without declar-
ing a leader if there are τ consecutive null rounds.
When τ → ∞ we have the classical model. On the
other hand, when τ = 1 we have the model consid-
ered by Kalpathy and Mahmoud [8]. The protocol
that we study in this paper is the same as that in-
troduced by Bondesson, Nilsson and Wikstrand [1]
under the name k-silent elimination, except that in
their proposal the protocol stops at the first stalled
round. We call the protocol that we analyze here the
Swedish leader election protocol in acknowledgement
to the work of Bondesson, Nilsson and Wikstrand.

Further variations could also be considered, for in-
stance, by having a rule to stop after τ null rounds
(consecutive or not) or to stop after ρ stalled rounds
(either consecutive or cumulative), etc.

This paper summarizes some of our preliminary
findings; a longer journal version currently under
preparation [10] collects these and many more, in-
cluding variances and distributional results (not just
averages, like here) and the analysis of various pa-
rameters conditioned to the success or failure of the
protocol.

2 A first example: Probability
of electing a leader

Let Sn := Sn(τ) be the probability of success of the
protocol. We also use Sn(t) to denote the probability
of success when only t− 1 additional null rounds will
be allowed before the protocol fails to elect a leader,
for 1 ≤ t ≤ τ . Then

(1) Sn(t) =
∑

1≤j≤n

(
n

j

)
pn−jqjSj(τ)

+ pnSn(t− 1), t > 0, n ≥ 2,

with Sn(0) = 0 for n ≥ 2, and S1(t) = 1 if t > 0. If
we define

Kn(τ) =
∑

1≤j≤n

(
n

j

)
pn−jqjSj(τ)

then the recurrence above reads

Sn(t) = Kn(τ) + pnSn(t− 1), n ≥ 2,

which can be easily solved by iteration, so that

Sn(t) = Kn(τ)(1 + pn + p2n + · · ·+ p(t−1)n)

=
1− ptn

1− pn
Kn(τ), t > 0, n ≥ 2.

Therefore we arrive at the following recurrence for
Sn = Sn(τ):

(2) Sn =
1− pτn

1− pn
n∑
j=1

(
n

j

)
pn−jqjSj , n ≥ 2,

and S1 = 1.
The procedure that follows now is fairly well estab-

lished and understood. The recurrence for the quan-
tity of interest, say Sn, is translated into a functional
equation over the corresponding exponential generat-
ing function (EGF). Then Poisson plus Mellin trans-
forms are applied to obtain a solution for the Mellin
transform, which is finally inverted via residue com-
putation to obtain precise asymptotic estimates of
the original quantity. Equivalently, instead of Mellin
transforms, we might use Rice’s method. For a gen-
eral description of these methods and its many ap-
plications we refer the reader to the surveys by Fla-
jolet et al. [3, 4], and the books by Szpankowski [14]
and by Flajolet and Sedgewick [5]. The procedure
sketched above is also known under the name ana-
lytic poissonization-depoissonization.

In our particular instance, we start multiplying
both sides of (2) by (1− pn)

(1− pn)Sn = (1− pτn)

n∑
j=1

(
n

j

)
pn−jqjSj , n ≥ 2.

so that the exponential generating function S(z) =∑
n>0 Snz

n/n! satisfies

S(z)− S(pz) = epzS(qz)− ep
τ+1zS(qpτz) + qpτz.
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This translates to the following functional equation
for the Poisson transform Ŝ(z) = e−zS(z):

Ŝ(z)−e−zS(pz) = Ŝ(qz)−e−z(1−p
τ+1)S(qpτz)+qpτze−z.

Rearranging,

Ŝ(z)−Ŝ(qz) = e−zS(pz)−e−z(1−p
τ+1)S(qpτz)+qpτze−z.

The next step is to apply the Mellin transform
to both sides of the equation above, with S∗(s) =

M
{
Ŝ(z); s

}
, and isolate S∗(s):

(3) S∗(s) =
1

1− q−s
(
qpτΓ(s+ 1)

+M
{
e−zS(pz)− e−z(1−p

τ+1)S(qpτz); s
})
.

The Mellin transform of the second term of the
numerator in right hand-side above is

M
{
e−zS(pz)− e−z(1−p

τ+1)S(qpτz); s
}

=

∫ ∞
0

{e−zS(pz)− e−z(1−p
τ+1)S(qpτz)}zs−1dz

=

∫ ∞
0

e−z
∑
k≥0

Sk
pkzk

k!
zs−1dz

−
∫ ∞
0

e−z(1−p
τ+1)

∑
k≥0

Sk
qkpτk

k!
zs−1dz

=
∑
k≥0

Sk
pkΓ(s+ k)

k!

−
∑
k≥0

Sk
qkpτkΓ(s+ k)

(1− pτ+1)s+kk!
.

To obtain the asymptotic behavior Sn as n → ∞,
we need to invert the Mellin transform, via

Ŝ(z) =
1

2πi

∫ − 1
2+i∞

− 1
2−i∞

S∗(s)z−sds.

The integral is evaluated by shifting the integration
path to the right with negative sign and collecting
the residues.

The main contribution to Sn comes from the
residue at s = 0, namely,

(4) C(q, τ) := Res(S∗(s)z−s; s = 0)

=
1

L

(
qpτ +

∑
k>0

Sk
k

(
pk − qkpτk

(1− pτ+1)k

))
,

with L := log(1/q). The other poles, located at the
imaginary axis, are

χj =
2πi

L
j, j ∈ Z \ {0}

whose overall contribution is

1

L

∑
j 6=0

n−χj
(
qpτΓ(χj + 1)

+
∑
k>0

Sk
k!

Γ(χj + k)
(
pk − qkpτk

(1− pτ+1)χj+k
))
.

We have thus the following theorem.

Theorem 1. Let Sn(τ) denote the probability that
the Swedish leader election protocol succeeds, given n
players at the start, and failing if there are τ consec-
utive null rounds. Then

Sn(τ) = C(q, τ)+δ(logQ n)+O(1/n), as n→∞,

where Q = 1/q, L = logQ,

C(q, τ) =
1

L

(
qpτ +

∑
k>0

Sk
k

(
pk − qkpτk

(1− pτ+1)k

))
,

and δ(x) is a periodic function of “small” amplitude
(depending on q and τ) and period 1, namely,

δ(x) =
1

L

∑
j 6=0

e−2xπij
(
qpτΓ(χj + 1)

+
∑
k>0

Sk
k!

Γ(χj + k)
(
pk − qkpτk

(1− pτ+1)χj+k
))
.

An alternative expression for Sn ∼ C(q, t) +
δ(logQ n) as n → ∞ follows by application of the
techniques in [12], with

C(q, τ) =
1

L

(
p+

∑
k>1

Sk
pk

k

1− p(τ−1)k

1− pτk

)
,

3



n
100 200 300 400

0.25

0.5

0.75

1

q = 0.1

q = 0.2

q = 0.3

Figure 1: A plot of Sn and C for several values of q;
in all plots τ = 2.

δ(x) =
1

L

∑
j 6=0

e−2xπij
(
pΓ(χj + 1)

+
∑
k>1

Sk
pk

k!

1− p(τ−1)k

1− pτk
Γ(χj + k)

)
.

To prove that the expression for Sn above and that
in Theorem 1 are equivalent, we use the recursion

1− pk

1− pτk
Sk =

k∑
j=1

(
k

j

)
pk−jqjSj

in the expressions for C(q, τ) and δ(x) above, inter-
change the order of summation, sum up the inner
sum via∑

k≥j

pkτ
(
k − 1

j − 1

)
pk−j =

pτj

(1− pτ+1)j
,

and simplify.
To conclude this section, we discuss briefly some

salient features of Sn by inspection of a few plots—of
course, all claims below can be analytically and rig-
orously proved. Figure 1 shows Sn as a function of n

n
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q = 0.2, τ = 1
q = 0.1, τ = 2

q = 0.2, τ = 2

q = 0.1, τ = 1

Figure 2: A plot of Sn and C+δ(logQ n) as functions
of n.

for several values of q. For each value of q, the figure
also shows the corresponding constant C. We have
fixed τ = 2 in all cases and we have used N = 100
terms of the series to approximate the value of C.
The red solid line corresponds to Sn with q = 0.1;
the red dashed line is C(0.1, 2). Similarly, the blue
lines correspond to q = 0.2. Finally, the black lines
correspond to Sn and C when q = 0.3. Observe the
periodic fluctuations for all Sn around each corre-
sponding limiting value C; as q increases the fluctu-
ations have smaller amplitude and C → 1.

Figure 2 shows Sn for several values of q and τ
(solid lines) and the corresponding approximations
as given by Theorem 1 (dashed lines). We have used
N = 20 terms to approximate C and the inner sum
of δ. In turn, only the terms for j = 1 and j = −1
were used to approximate the value of the fluctua-
tion. The approximation is better as q increases; for
values as low as q = 0.2 the approximation is already
extremely good. And, of course, using more terms
to compute C(q, τ) and δ(logQ n) also improves the
approximation.

Figure 3 plots Sn as a function of q for several
values of n. The solid blue line corresponds to n = 10,
the solid red line to n = 15 and the solid purple line to
n = 20. The figure also depicts C(q, τ) as a function
of q (dashed black line). Here, we have used N = 100
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Figure 3: A plot of Sn and C as functions of q, for
several values of n; τ = 2 in all cases.

to approximate the value of C. In all cases, we have
fixed τ = 2.

The last plot (Figure 4) depicts Sn as a function of
τ , for several values of q. Here n = 20. The red line
is for q = 0.1, the blue line for q = 0.2, the purple
line for q = 0.3 and the black line for q = 0.4.

3 More parameters

The analysis sketched in the previous section is rep-
resentative of the procedure and techniques involved
in the analysis of various parameters of the protocol.

In general, for many parameters Xn := Xn(τ) we
can set up a recurrence of the form

(5) Xn(t) =

n∑
j=1

(
n

j

)
pn−jqjXj(τ)

+ pnXn(t− 1) + Tn, t > 0, n ≥ 2,

for some toll function or sequence {Tn}n≥0. Further-
more, the initial values X1 = X1(τ) and Xn(0), to-
gether with the toll function characterize different pa-
rameters of the protocol. We assume that X0(t) = 0

τ
5 10 15 20

0.5

0.75

1

q = 0.1

q = 0.2

q = 0.3

q = 0.4

Figure 4: A plot of Sn as a function of τ for several
values of q, n = 20.

for all t ≥ 0, and T0 = 0.
Indeed, as we have shown in Section 2, for the prob-

ability of success Sn we have S1(t) = 1 for all t > 0,
Sn(0) = 0, and Tn = 0 for all n ≥ 2.

Let us consider other parameters now.

1. For the expected number of rounds Rn, we have
that Tn = 1 if n ≥ 2, Rn = 0 if n ≤ 1 (because
no more rounds are needed if there is only one
or no player remaining) and Rn(0) = 0 (because
no more rounds are made once the protocol is
stopped).

2. For the expected number of null rounds In, we
have Tn = pn (with probability pn the round
is null, otherwise it is not) if n ≥ 2, Tn = 0 if
n ≤ 1, I1 = 0 and In(0) = 0 (since the protocol
is stopped).

3. For the expected total number of coins flipped
Fn, the toll function is Tn = n for n ≥ 2, and
the initial conditions are Tn = 0 if n ≤ 1, F1 = 0
and Fn(0) = 0 for all n.

4. For the expected number Ln of players that were
active at the last non-null round (the so-called
left-overs), we have L1 = 0, Ln(0) = n if n ≥ 2
and Tn = 0 for all n. If we are interested in the
expected number L′n of left-overs conditioned on
the failure of the protocol, we need only to divide
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Ln by the probability of failure 1 − Sn, as the
number of left-overs conditioned on the success
of the protocol is 0.

The approach deployed in Section 2 can be applied
here to get

(6) X∗(s) =
1

1− q−s

(
T ∗(s)

+ Γ(s+ 1)(qpτX1 − (1− pτ )T1))

+M
{
e−zX(pz)− e−z(1−p

τ+1)X(qpτz)

− e−zT (pτz) + e−z
∑
n≥2

Xn(0)(1− pn)
(pτz)n

n!
; s
})

,

where X∗(s) = M{e−zX(z); s}, T ∗(s) =
M{e−zT (z); s} and

X(z) =
∑
n≥1

Xn

n!
zn,

T (z) =
∑
n≥1

Tn
n!
zn.

In particular, the last term of (6) is

(7) M
{
e−zX(pz)− e−z(1−p

τ+1)X(qpτz)

− e−zT (pτz) + e−z
∑
k≥2

Xk(0)(1− pk)
(pτz)k

k!
; s
}

=
∑
k≥1

Xk

k!
Γ(s+ k)

(
pk − qkpτk

(1− pτ+1)s+k

)
−
∑
k≥1

Tk
k!
pτkΓ(s+k)+

∑
k≥2

Xk(0)

k!
pτk(1−pk)Γ(s+k).

The Mellin transform given by (6) will be defined
in some strip of the complex plane, for instance, <s >
−1, and will have poles at s = 0 and s = χj , for all
j ∈ Z \ {0}, where

χj =
2πi

L
j,

as well as possibly other poles. The location of the
other poles and the fundamental strip will ultimately

depend on the (rate of growth of) sequence {Tn}n≥0.
So, in general, we will have that Xn ∼ Xn,1 + Xn,2,
where Xn,2 is the contribution coming from (7) at the
poles s = 0 and s = χj :

Xn,2 =
1

L

∑
k≥1

Xk

k

(
pk − qkpτk

(1− pτ+1)k

)(8)

+
1

L

∑
k≥2

Xk(0)

k
pτk(1− pk)− 1

L

∑
k≥1

Tk
k
pτk

+ δX,2(logQ n),

δX,2(x) =
1

L

∑
j 6=0

e−2πijx

{∑
k≥1

Xk

k!

(
pk

(9)

− qkpτk

(1− pτ+1)k+χj

)
Γ(χj + k)

+
∑
k≥2

Xk(0)

k!
(1− pk)pτkΓ(χj + k)

−
∑
k≥1

Tk
k!
pτkΓ(χj + k)

}

We will find convenient to introduce the following
notation, since it occurs often in the examples that we
will consider later: given any sequence A = {An}n≥1,

C(A; q, τ) :=
1

L

∑
k≥1

Ak
k

(
pk − qkpτk

(1− pτ+1)k

)
.

Notice that as long as An has polynomially bounded
growth, the series C(A; q, τ) converges to a constant
that depends on q and τ .

Let’s now move on to the concrete examples. The
expected number of rounds Rn before a leader is
elected or the protocol fails fits into the general
framework we are discussing in this section. Indeed,
we need just to specialize (6) for Xn ≡ Rn, with
Tn = 1 for n > 1, T1 = 0, X1 ≡ R1 = 0 and
Xn(0) ≡ Rn(0) = 0. Then T (z) = ez − z − 1 and

T ∗(s) = −Γ(s+ 2)/s,
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Figure 5: A plot of Rn − logQ n and the approxima-
tion given by Eq. (10), for several values of q; in all
plots τ = 2.

R∗(s) =
1

1− q−s
(
−s−1Γ(s+ 2) +M{. . .; s}

)
,

in the fundamental strip −2 < <s < −1 (see [3]); we
have refrained from writing here the second term in
full to avoid cluttering.

Again, the asymptotic behavior of Rn for large n
can be found by inversion of the Mellin transform
R∗(s). The main contribution comes from the pole
at s = 0, and the poles at s = χj contribute a fluctu-
ating term δR(logQ n) which is O(1):

Rn = logQ n+
γ

L
+

1

2
− 1

L
+

1

L

(
pτ + log(1− pτ )

)
+ C(R; q, τ) + δR(logQ n) +O(n−1 log n).

Figure 5 compares the value of Rn − logQ n to the
constant term

(10)
γ

L
+

1

2
− 1

L
+

1

L

(
pτ + log(1− pτ )

)
+C(R; q, τ)

above, using N = 20 terms to approximate the value
of C(R; q, τ).

The same recipy allows us to work out the other
quantities that we considered at the beginning of the
section.

1. The expected number In of null rounds, for
which we have

In = 1− p

L
+

1

L

(
pτ+1 + log(1− pτ+1)

)
+ C(I; q, τ) + δI(logQ n) +O(1/n).

2. The expected total number Fn of coin flips sat-
isfies

Fn =
n

p
+O(1).

The main contribution here comes from the pole
at s = −1. It is worth mentioning that, as we are
using the most basic asymptotic estimate Fn ∼
F̂ (n)(1 +O(1/n)) with

F̂ (z) =
∑

s0 is a pole

Res(F ∗(s)z−s, s = s0),

the contributions from the poles at s = 0 and
s = χj are “masked” by the relative errorO(1/n)
introduced by depoissonization; using more re-
fined versions of analytic depoissonization we
could get precise estimations of the lower order
terms in Fn.

3. The expected number of leftovers Ln is given by

Ln =
1

L

(
1

1− pτ
− 1

1− pτ+1
− pτ + pτ+1

)
+ C(L; q, τ) + δL(logQ n) +O(1/n).

The functions δI(x) and δL(x) above are periodic
functions of period 1 and relatively “small” ampli-
tude that collect all the contributions coming from
the infinitely many poles s = χj at the imaginary
axis.

4 Cumulated null rounds

In this last section, we briefly sketch the approach
that we can use to analyze the case where the pro-
tocol stops if there have been τ null rounds already,
whether consecutive or not.
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If we call Sn,t the probability of successfully choos-
ing a leader among n players, with failure if there are
t null rounds, then

Sn,t =

n∑
j=1

(
n

j

)
pn−jqjSj,t + pnSn,t−1, n ≥ 2,

with S1,t = 1, and Sn,0 = 0 if n ≥ 2. This recurrence
cannot be unwinded like we did to get (2), so we
introduce

St(z) =
∑
n>0

Sn,t
n!

zn.

Then, following the same steps as in previous sections

S∗t (s) =M
{
e−zSt(z); s

}
= p

Γ(s+ 1)

1− q−s
+
M{e−zSt−1(pz); s}

1− q−s
.

From there we get

Sn,t ∼
1

L

(
p+

∑
k>0

Sk,t−1
pk

k

)
+ δ′(logQ n).
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